Crosslinked Polymer‐Brush Electrolytes: An Approach to Safe All‐Solid‐State Lithium Metal Batteries at Room Temperature
نویسندگان
چکیده
Abstract Invited for this month's cover picture is the group of Zi‐Hao Guo from South China University Technology, Guangzhou, China. The demonstrates a room‐temperature lithium metal battery enabled by all‐solid‐state organic polymer electrolytes with crosslinked short‐brush architecture, and future world powered next‐generation high‐energy solid‐state batteries. Read full text Research Article at 10.1002/batt.202100319 .
منابع مشابه
Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to ana...
متن کاملSuperionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safet...
متن کاملIonic Liquid Based Electrolytes for High-Temperature Lithium-Ion Batteries
Today, lithium-ion batteries (LIBs) are ubiquitous in mobile phones, laptops, and other portable devices. The research community strives to further improve the LIB to increase electric driving distance and efficiency of both hybrid electric vehicles (HEVs) and fully electric vehicles (EVs). Conventional LIBs need to be strictly temperature controlled, most often cooled, to ca. 30°C, to ensure a...
متن کاملA highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Batteries & supercaps
سال: 2022
ISSN: ['2566-6223']
DOI: https://doi.org/10.1002/batt.202200004